
C O N V E C T I V E  S T A B I L I T Y  O F  A L A Y E R  OF 

M A G N E T I Z A B L E  L I Q U I D  W I T H  S O L I D  B O U N D A R I E S  

B . G .  B a s h t o v o t  a n d  M.  I .  P a v l i n o v  UDC 538.4:538.114 

The convective stability of a layer  of magnetizable liquid with solid boundaries in inhomogeneous 
t r ansve r se  and longitudinal magnetic fields is studied. Magnetic field distortion producedby 
the nontsothermal  state of the liquid is considered.  

Convective stability of a magnetizable liquid is usually studied withthe assumption that the magnetic field 
is specified [1-51. However, temperature  perturbations lead to changes [nmagnetic field intensity, which, as 
was shown in [6, 7], can produce a significant effect on the liquid's convective stabili ty.  Thus, in [7] convec-  
tive stability of a horizontal  layer of magnetizable liquid in a longitudinal homogeneous magnetic field was 
studied with cons ideration of distortions (perturbations) of the field produced by temperature  perturbat ions.  
It was shown that in this case magnetic field perturbations lead to stabilization of the layer  relat ive to pe r tu r -  
bations, the wave vector of which is directed along thefteld.  In a study of stability of a horizontal  layer  of 
magnetizable liquid heated from below in a t r ansver se  homogeneous magnetic field [6], although field pe r tu r -  
bat ionswere  considered,  their role was not clarif ied.  Thus, the resul ts  obtained in those studies indtcate that 
the effect of magnetic field perturbations on convective stability of a magnetizable liquid may depend onthe 
direction of the equilibrium magnetic field, butthis dependence has notye t  been clarif ied.  

In order  to determine the manner  inwhich the direction of the equilibrium magnetic field affects the con- 
trfbution of magnetic field perturbations to the thermomagnet ic  ins lability mechanism,  we will cons [der the con- 
vective stability of a plane layer  of magnetizable liquid with solid boundaries,  heated from below, in a t r ans -  
verse  Hz(z) and longitudinal I-Ix(z) magnetic field witha constantgradient  along the z axis (the z axis of the 
Cartesian coordinate system will be directed perpendicular  to the layer,  and the x and y axes,  along the layer) .  
These two problems differ only in the direction of the magnetic field. We assume that gravitational forces 
are  absent and that l iqutdmagnettzation is descr ibed by a linear "magnetic state" equation 

M = M* + X (H - -  H*) - -  (g + 13M*) @. (17 

We note that the magnetic fields Hx(Z) and Hz(Z ) are  not exact solutions of Maxwell 's equations. However, it 
can be shownthat this formulation is a limiting case of the rigidly formulated problem of stability of a cyl indri-  
cal layer ,  stated in the following manner .  A magnetizable e lectr ical ly  nonconduetive incompressible liquid is 
located in the gap between two solid cylindrical  surfaces ,  the temperature  of which is specified (the inner cylin-  
der temperature  T 1 is higher than the outer cylinder temperature  T2). It iS assumed that the roles  of internal 
rotat ions,  magnetostr ict ton,  and the magnetocalor tc  e f fec ta re  insignificant and that gravitational forces  are  
absent.  In this case a mechanical  equilibrium exists within the magnetizable liquid: 

Tl In (r/rz) - -  7"2 In (r/rt) 
~ = O; To= 

In (rt/rz) 

In this case Maxwell 's equations permit  equilibrium one-direct ion solutions: inone of the cases the mag-  
netic f ieldhas only an azimuthal component H =He(r) = 1/27rr and can be created by a cur rent  I flowing through 
the inner cylinder,  while in the seeondease  there is only a radial  component; i . e . ,  

const (K 4- I~M*) [T~ In (r/r,) - -  T l  In (r/r~)l 
H = H r (r) = + 

r (1 q- X) In (rz/ri) 

It is a s sumedhe re  that the cylindrical  layer  of magnetizable liquid is surrounded by a nonmagnetic mass  and 
that the gapbetween the cylinders is small ,  i . e . ,  t/R0<< 1 [Z = r  2 - rt;  R 0 = (r t + r2)/21. We expand the expres -  
sions obtained for To, I-Io(r), Hr(r) in powers of l / R  o and z /R  0, where z =r  --  R 0. Limiting ourselves  to the 
f i rs t  t e rms  of these expansions, we obtain 

Trans la ted  from Inzhenerno-Fiz icheski i  Zhurnal, Vel.  35, No. 2, pp. 326-333, August, 1978. Original 
ar t ic le  submitted September 7, 1977. 
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F i g .  1.  Func t ion  Ra~C~(A~)for va r ious  values  of p a r a m e t e r  Ai:  1) A i = 
1; 2) 5; 3) 15. 

F ig .  2. Func t ion  RaCmr(A1) fo r  va r ious  values of p a r a m e t e r  A2: 1) A 2 = 
1; 2) 0 .5 ;  3) 0 . 3 .  

To = - -  (Tt - -  T2) z/l + (T i -~- T,)/2, 

He (r) = Hx (z) = (I/2aR0) (1 - -  z/Ro), 

H r (r) = H z (z) = const (1 - -  z/Ro)/Ro -7- (K + ~M*) (T l - -  Tz) z/(t + X) l. 

Thus ,  the s tudy of convec t ive  s tabi l i ty  of a thin c y l i n d r i c a l l a y e r  of magne t i zab le  liquid in magne t i c  fields 
Hco(r) and H r ( r  ) is m a t h e m a t i c a l l y  equivalent  to s tudy of convect ive  s tabi l i ty  of a plane l aye r  of magne t i zab le  
liquid in longi tud ina land  t r a n s v e r s e  magne t i c  f ields with a cons tan t  t r a n s v e r s e  g rad ien t .  We will cons ide r  each 
of these  c a s e s  s e p a r a t e l y .  

1. H = [Hx(z) =H* +Gz;  0; 0]. We w i l l a s s u m e  that  pe r tu rba t ions  of veloci ty ,  t e m p e r a t u r e ,  and magne t i c  
f ield sa t i s fy  a s y s t e m  of l inea r  f e r r o h y d r o d y n a m i c s  equat ions  in the Bouss ine sq  approx imat ion .  We choose  
as s ca l e  coef f ic ien t s  the th ickness  of the l aye r  l fo r  the coord ina te ,  12/v fo r  t ime,  •/l fo r  ve loc i ty ,  7 l  f o r  t e m p e r -  
a tu re ,  Gl fo r  magne t i c  field,  and e l imina te  g rad ien t  t e r m s  f r o m  the mot ion  equat ions .  Then in the weak field 
inhomogenei ty  approx ima t ion  H* >> Gl the s y s t e m  of defining d imens ion le s s  equat ions  will  have the f o r m  [10] 

0 Av. = h2v, + Grin 0x 2 0 - -  Gr~, -', - -  , (2) 
0-7- " Oy 2 ~ Oy 2 &,'j 

O0 1 
- -  = v~ + h O ,  (3) 
Ot Pr 

020 O0 
A i h O +  (1 - -Ai)  ~ - - A z  Ox I = 0 (4) 

Here  0/Oxj is the de r iva t ive  a long the C a r t e s i a n  coord ina te  along which the equi l ib r ium magne t i c  field is d i r e c t -  
ed.  The longi tudinal  f ield case  c o n s i d e r e d h e r e  c o r r e s p o n d s  to xj =x; Grm =Po(K+flM*)TGl4/p*v 2 is the 
Gra sho f  magne t i c  num be r .  The  c r i t e r i o n  A 1 = ( I + M * / H * ) / ( I + x )  c h a r a c t e r i z e s  the devia t ion of the "magne t i c  
s ta te"  equat ion f r o m  l inear i ty ,  while A 2 =(K+ f lM*)T/(I+•  c h a r a c t e r i z e s  the ra t io  of the inhomogenei ty  in the 
magne t i c  f ield p roduced  by the n o n i s o t h e r m a t  s ta te  of the liquid to the value of the c h a r a c t e r i s t i c m a g n e t i c  f ield 
g rad ien t .  

In t roducing  n o r m a l  pe r tu rba t ions  

v z, O, 09 ~ exp i (k~x -- levy ), (5) 

we obtain f r o m  s y s t e m  (2)-(4) equat ions  for  the ampl i tudes :  

( d  2 __ k 2) 
- -  v - -  Ra m kzO : -  i Ra m leZk~O = O, dz 2 

daq~ 
- -  ao ik~O - -  (k~ + A,  k~) r + A, = O. 

. d z  2 

(6) 

(7) 

IS) 
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Fig.  3. Stability curves  y ~  
(RamA~)l/2, ordinate axis 
(Rah/h~) #2. 

If the layer  is boundedby r igid walls ,  the t e m p e r a t u r e  of which is specified,  then the boundary conditions for  
velocity and temperaCure have the fo rm 

dv 
v =  - -  = 1 9 = 0  for z=-+-1/2.  

dz (9) 

The boundary conditions for  the potential  ~ a r e  compl ica ted  by the fact  that per iodic  magnet ic  field pe r tu rba -  
tions produced within the liquid by t empe ra tu r e  per turba t ions  induced a periodic magnet ic  field outside the 
l aye r .  If the layer  of magnet izable  liquid is bounded by nonmagnetic s e m i s p a c e s ,  then outside the layer  the 
magnet ic  potential  ~ will be defined by the equation 

F r o m  the condition of continuity of the normal  component  of induction andthe tangential  component  of 
magnet ic  field intensi ty 0 n the boundary,  i tfollows that 

= (D; dT (I -- M*/H*) dO) 
dz dz 

Substituting the solutions of Eq. 
in [6]: 

(10) 

(11) 

(10) in Eq. (11) gives boundary conditions for  ~, analogous t o t  hose obtained 

dO 
(1 ~- M*/H*) -~z ~ k(I) = 0 for z = _ 1/2. (12) 

System (6)-(8) is invar iant  for  the t r ans fo rmat ion  z ~ - -z ,  so that the exact  solutions for  per turba t ions  
of velocity,  t e m p e r a t u r e ,  and magnet ic  field a r e  even. We will solve the s y s t e m  of equations (6)-(8)withbound- 
ary  conditions Eqs.  (9), (12) by the Galerkin method,  writ ing the velocity and t e m p e r a t u r e  inthe fo rm 

v =  a (z2-1/4r o =  (13a) 
i = 1  i = l  

The functions for the velocity and t e m p e r a t u r e  per turba t ions  sa t i s fy  the boundary conditions.  

Use of the Galerkln method with equations of the fo rm of Eq. (8) is somewhat  specia l ized  because  of the 
fo rm of the boundary conditions for  the magnet ic  f ie ldper turba t ion  potential: In these  cases  it is suff icient  to 
have a sy s t em of functions which sa t i s fy  only the comple teness  condition [8, 9]. The re fo re ,  the function for  the 
magnet ic  field per turba t ion  potential can be chosen for  convenience in fur ther  integration in the m o s t  s imple  
form:  

n~2  

(9 = ~ ciz 2(~-j). (13b) 
i ~ l  

Following the Galerk in  method,  we requi re  that Eq. (6) be orthogonal to eve ry  tes t  function for  velocity,  while 
Eq.  (7) mus t  be orthogonal  to eve ry  t e m p e r a t u r e  tes t funet ion .  F o r  Eq.  (8), due to the fact  that  t es t  functions 
for  the magnet ic  field per turbat ion  potential  Eq. (13b) do not sat isfy the boundary conditions Eq. (12), o r thog-  
onality is understood inthe  following sense  [9, 10]: 
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~-11'2 

Y -~-z  
- -1 /2  

+ 1 + M*/H* z=1/2 -~z I +  M*/H* ~=-1/2 
(14) 

As a resu l t ,  we obtain f rom the orthogonali ty conditions a sys t em of homogeneous l inear  equations for  the 
coeff icients  of the expansions of the t e s t  functions.  This  sys t em of equations has a solution when and only when 
its de te rminan t  is equal to zero ,  which leads to a cha rac t e r i s t i c  equation for  de termining the eigenvalue Ra m,  
which in the f i r s t  approximat ion  of the Galerkin  m e t h o d m a y  be found analyt ical ly:  

Ra,~ = 19600(0.8 + 4k2/105 ~ k4/630) (1/3 + k Z / 3 0 ) / k 2 - ~  - Ra,~ Azk~ (14531- hsz/6 -]- h3J72)/Aa, (15) 

where  A 3, A31, A32, A33 a re  t h i r d - o r d e r  de te rminan ts ,  which wil lnot  be p resen ted  here  because  of space l imi ta -  
t ions .  

F r o m  analys is  of Eq. (15) it follows that the p a r a m e t e r  Ra m is m t n i m a l a t  k x = 0 (cr i t ica l  motions a re  swells 
wi thaxes  pa ra l l e l  to the equi l ibr ium magnet ic  field) and tha t  its c r i t i ca l  value is 1750. The re  is an analogy 
he re  with gravi ta t ion .  We note that for  s tabi l i ty  of a l ayer  of nomnagnetic  liquid with r igid walls in a g r av i t a -  
tional field, the Ga le rk inmethod  wi th t e s t  functions (13) in the f i r s t  approximat ion  gives a c r i t i ca l  Rayleigh 
number  of 1750; in the second approximat ion,  1708.8,  and in the third,  1707.77; i . e . ,  an accuracy  of ~2% is 
produced even in the f i r s t  approximat ion  [6]. The change in the s t ruc tu re  of c r i t i ca l  motions produced by a 
longi tudinalmagnet ic  field can eas i ly  be obse rved  in exper imen t  even inweak magnet ic  f ie lds .  

2. H = [0; 0; Hz(z) =H* + Gz]. We will cons ider  the stabil i ty of a l ayer  of magnet izable  liquid heated f rom 
below in a t r a n s v e r s e  inhomogeneous magnet ic  field Hz(Z ). Per turba t ions  of velocity,  t empera tu re ,  a n d m a g -  
netic field a r e  desc r ibed  by the s y s t em  of equations (2)-(4), xj = z. Considering,  as before ,  no rmal  per turba t ions ,  
we obtain 

( d ~ z - - k  z v - -Ra~ /~  @-- ~-z = 0 ;  

( dZ - - k z  ) 0 = 0 ;  (16) 
v + dz" 

d~(I) At kZ@-- Ae dO =: O. 
dz z dz 

Veloci ty and t e m p e r a t u r e  per turba t ions  on the boundar ies  sa t is fy  Eq. (9). Fo r  the magnet ic  field per turba t ion  
potential  ~ the boundary conditions a r e  obtained in the same  manner  as in the f i r s t  ease ,  but have a somewhat  
different  fo rm [6]: 

d@ /e 
- -  r = 0. (17) dz 1 -::- "z 

The s y s t e m  of equations (16) is invar iant  for  the t r ans fo rmat ion  z ~ - - z ,  ~ - - ~ ,  so tha t exac t  solutions 
for veloci ty and t e m p e r a t u r e  per turba t ions  a r e  even, while those for  magnet ic  field per turba t ions  a re  odd. 

We will solve s y s t em  (16) with boundary conditions (9), (17) by a v a r i a n t o f  the Galerkin me thoddesc r ibed  
above,  r ep re sen t ing  the velocity,  t e m p e r a t u r e ,  andmagne t ic  field in the fo rm of power s e r i e s  

n§ 

v-= "~ ai(z"~--i/4) '+';  @= s bi(zU--1/4)~; (I)= ~ c,z 2~-'. 
z_~  
i ~ l  i ~ l  i~1 

In the f i r s t app rox i m a t i on  (n = 1)the p rob lem is solvable analyt ical ly  and leads to the following equation for the 
s tabi l i ty  boundary: 

Ra m : 19600 (0.8 § 4kZ/105 § kS/630) (1/3 -V k2/30)/k 2 ~- Ra m A2 ( 1 4 d i J 3 -  dz3'2 -- 5d3J72)/d3, (18) 

where  d 3 is a t h i r d - o r d e r  deterrninantwith  e lements  

D~z = D 2 i  = Aik2/80 ~ k/8(1 & Z) : 1/4; 

Di3 = D3i -- D22 = Aike/448 -k k/32(1 -- •) ~- 1/16; 

Dz3 = D3z = AikZ/2304 -~ k/128(I ~- 7~) -k 15/7"26; 

D i i  = AikZ/12 -~ k/2(1 -~ ~) ~ 1; Dz3 = Aik2/11.2 l~ =- k/29(I -- )~) '-- 25/9.2 ~, 
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and di3 a r e  obtained by r ep lacemen t  of the i-th column of de terminant  d 3 by the column (1/6, 1/40, 1/224). F r o m  
Eq.  (18) it follows that magnet ic  field per turbat ions  involve the beginning of convective instabili ty,  increasing 
the c r i t i ca l  values of Ram; i . e . ,  in this case ,  genera l ly  speaking, there  is no analogy with gravi ta t ion .  But 
if the magnet ic  field dis tor t ions produced by t e m p e r a t u r e  per turbat ions  a re  smal l ,  then the magnet ic  field can 
be cons idered  specif ied.  

The genera l  condition for  neglect  of magnet ic  field per turbat ions  was obtained in [10] by the methodof  
s imi la r i ty  theory  

A2 << AI (I 9) 

To produce a concrete meaning for condition (19), we will analyze the dependence of Ra~ on the param- 
eter A2, shown in Fig. i, for various values of the parameter A I. 

It is evident from the figure that for linear dependence of liquid magnetization on magnetic field intensity 
(A I =I), the contribution of magnetic field perturbations to critical magnetic Rayleigh number RaCmr willbe less 
than 10% for A~ < 0.25, while the value of this contribution decreases with growth of A i . 

For a magnetizable liquid with parameters Y ~I0~ deg/m, M* ~103 A/m, p ,~i0 -3 I/deg, K ~103 A/m �9 deg 
the contribution of magnet ic  field per turba t ions  to the c r i t i ca l  t e m p e r a t u r e  gradient  wil lbe less  than 10% in 
fields witha gradient  G> 4 .105 A / m  2. 

Ln o rder  to c lar i fy  the effect  on convective s tabi l i ty  of the re la t ionship  between field andmagnet iza t ion ,  
Fig.  2 shows the c r i t i ca l  value of Rayleigh number  as a function of the nonl inear i ty  p a r a m e t e r  A 1 for  var ious 
values of the d imensionless  complex A 2. It is evident that  at  AI>>A2, I % ~  tends to 1750, i . e . ,  the gravi ta t ion 
analogy exis t s ,  or ,  in other  words ,  at  A 1 >>A 2 magnet ic  field per turbat ions  have no significant  effect  on con- 
vect ive stabil i ty of a magnet izable  liquid [at A 1 > 7 ina homogeneous magnet ic  field (A 2 =1) the contribution of 
magnet ic  field per turba t ions  to the c r i t i ca l  magnet ic  Ray le ighnumber  values is less  than 10%]. F o r  avai lable 
magnet ic  liquids A 1 ~ 1, but in a purely fo rma l  manner  we can cons ider var ia t ion of this p a r a m e t e r  over  wide 
bounds. 

The d imensionless  p a r a m e t e r s  Ram and A 2 contain the value of the cha rac t e r i s t i c  magnet ic  field gradient  
in a noniso thermal  magnet izable  liquid G. We note that G does not always coincide with the cha rac t e r i s t i c  m a g -  
netic field gradient  in an i so thermal  liquid G' (we will t e r m  the la t ter  the externa l  gradient) ,  and in the p rob-  
lem under considerat ion includes st i l l  another  magnet ic  field gradient  produced by the t e m p e r a t u r e  d i f ference  
ac ro s s  the layer  boundaries ;  i . e . ,  

G = G' -[- (K 4- [3M*) vl(i + 7.). 

In o rde r  to c la r i fy  the dependence of c r i t i ca l  ex terna l  magnet ic  field gradient  value on t empe ra tu r e  gradient ,  
we compose  dinaensionless complexes ,  one of which 

(Ram A2)i/2 = (K + ~M*) ?l 2 [~to/V• (1 --  %)]i/~ 

does not contain the magnet ic  field gradient ,  while the second 

(Ram/A2) 1/2 = G,lZ l ao (1 + 73/v• ~/-~ 

does not contain the t e m p e r a t u r e  gradient ;  we use here  the notation 

Ram = t% (K + [~M*) G'??/9*v• A~. = (K 4- ~M*) ~,/(1 _ %) O'. 

Thenthe equation for  the s tabi l i ty  l imi t  leads to the following dependence of d imensionless  externa l  m a g -  
v t 1 2 netic field gradient  (Ram/A~)~/2 on d imensionless  t e m p e r a t u r e  gradient  (RamA2) / : 

(l~am/A~ )1/2 =_ 19600 (0.8 + 4U/105 :-- k~/810)//~z (Ram A.~ )1/2 _ (Ram A~ )i/2 (14d~J3 - -  dz3/2 + 5d~J72 -- d3)/d 3. 

The stabil i ty l imi t  curve (Fig. 3) is shown on the coordinate plane {(Ra~n/A~)l/2, (RamA~)l/2} b y a  solid 
, , )V2 line [the d imensionless  gradient  (RamA 2 is depicted in logar i thmic  scale  in Fig.  3]. The dashed line shows 

the s tabi l i ty  curve which wouldbe obtained without cons ide ra t ionof  magnet ic  field per tu rba t ions .  If, in studying 
the instabil i ty of a horizontal  l ayer  of magnet izable  liquid tnan inhomogeneous magnet ic  field Hz(Z) we a s sume  
that  the magnet ic  field is specified,  i . e . ,  if for  the cha r ac t e r i s t i c  magnet ic  field gradient  G we choose the e x t e r -  
nal gradient  G' ,  then the stabil i ty l imi t  curve will be a hyperbola  ( d a s h -  dot line of Fig.  3). It is evident f rom 
Fig.  3 that such an approach,  i . e . ,  the magnet ic  field specif ied and set  equal to the field in an i so thermal  m a g -  
net izable liquid, is applicable for  t e m p e r a t u r e  gradients  (RaMA~)I/2 < 50. 
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Thus,  we can conclude that the cha rac t e r  of the effect  of magnetic field perturbat ions on convective s tabi l-  
ity of a layer  of magnetizable liquid is de termined by both the intensity gradient  and the direct ion of the equil ib- 
r ium magnetic  field. In other  words,  the cr i t ica l  Rayleigh number value corresponds  to convective motions 
not produced by magnetic field per turbat ions  alongthe f ie ldaxis .  If such motions a re  impossible in a given 
geometry ,  then the magnetic  field per turbat ions which do develop are  involved with the beginning of convective 
instability,  increasing the values of the cr i t ica l  p a r a m e t e r s .  

N O T A T I O N  

M', H-~ liquid magnetizat ion andmagnet ic  field s t r eng thvec to r s ;  M, H, magnitudes of these vec tors ;  T, 
liquid t empera ture ;  p, density; *, index denoting mean values over  layer;  • magnetic susceptibil i ty;  ~, coef-  
f icient of kinematic viscosi ty;  n,  thermal  diffusivity; T, charac te r i s t i c  t empera tu re  gradient;  G, cha rac t e r i s -  
tic magnetic field gradient;  K, pyromagnet ic  coefficient;  fl = (-1/p)(Sp/aT); r 1, r 2, radi i  of internal  and ex te r -  
nal boundaries of cyl indr ical  Layer; v, | d imensionless  per turbat ions;  z, velocity and t empera tu re  components; 
r dimensionless  magnetic  field perturbat ion potential (HI=V~); k 2 =k2x +k~, square of dimensionless  wave 
number;  P r  =v/n, dimensionless  Prandt l  number .  
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